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This paper treats the generalization to brane dynamics of the covariant canonical
variational procedure leading to the construction of a conserved bilinear symplectic
current in the manner originally developed by Witten, Zuckerman, and others in the
context of field theory. After a general presentation, including a review of the relation-
ships between the various (Lagrangian, Eulerian, and other) relevant kinds of variation,
the procedure is illustrated by application to the particularly simple case of branes of
the Dirac–Goto–Nambu type, in which internal fields are absent.
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1. INTRODUCTION

The purpose of this paper is to consider the application to classical brane me-
chanics of the general principles of covariant canonical variational analysis, which
provides a canonical symplectic structure, whose potential utility as a starting point
for the covariant construction of corresponding quantum systems has been empha-
sized by Witten, Zuckerman, and others (Cartas-Fuentevilla, 1998; Crncovic and
Witten, 1987; Nutku, 2000; Rovelli, 2002; Soh, 1994; Witten, 1986; Zuckerman,
1987) in the context of relativistic field theories. The task of extending such anal-
ysis from ordinary field to branes (meaning systems with support confined to a
lower-dimensional worldsheet) has recently been taken up by Cartas-Fuentevilla
(2002a,b). The necessary analysis has been facilitated by the relatively new de-
velopment (Battye and Carter, 1995, 2000; Carter, 1993) of suitably covariant
methods of geometrical analysis, which have already been shown to be far more
efficient than the more cumbersome (and error prone) frame-dependent methods
used in earlier work for treating other problems, such as the divergences arising
from self-interaction (Carter, 1997; Carteret al., in press; Carter and Battye, 1998).

One of the questions that has arisen in this work is that how the conserved an-
tisymmetric bilinear perturbation current that was obtained by a different approach

1 An earlier version of this paper was presented at2002 Peyresq workshop.
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in my original perturbation analysis (Carter, 1993) of simple Dirac–Nambu–Goto
type branes is related to the closed symmetric structure of the canonical treatment.
The claim (Carter-Fuentevilla, 2002a) that both approaches lead ultimately to the
same result was based on an argument that, in its original version, depended on
intermediate steps involving a questionable logical shortcut, but the ensuing con-
clusion is fully confirmed by the more rigorous and complete treatment provided
here.

2. BRANE VARIATIONAL PRINCIPLE

The present work will be concerned with the very broad category of conserva-
tive p-brane models whose mechanical evolution is governed by an action integral
of the form

I =
∫
Ldp+1σ, (1)

over a supporting worldsheet with internal coordinatesσ i (i = 0, 1,. . . , p), and
induced metric ηi j = gµνxµ, i xν, j , in a background with coordinates
xµ, (µ = 0, 1,. . . , d) (d ≥ p) and (flat or curved) space–time metricgµν . The
relevant Lagrangian scalar density is expressible in the form

L = ‖η‖1/2L , (2)

whereL is scalar function of a set of field componentsqA (including background
coordinates) and of their surface deriatives,qA

,i = ∂i qA = ∂qA/∂σ i . The relevant
field variablesqA can be of internal or external kind, the most obvious example of
the latter kind being the background coordinatesxµ themselves.

The generic action variation,

δL = LAδq
A + pi

Aδq
A
,i , (3)

specifies a set of partial derivative componentsLA and an associated set of general-
ized momentum componentspi

A. According to variation principle, the dynamically
admissible “on-shell” configurations are those characterized by the vanishing of
the Eulerian derivative as given by

δL
δqA
= LA − pi

A, i . (4)

In terms of this Eulerian derivative, the generic Lagrangian variation will have
the form

δL = δL
δqA

δqA + (pi
Aδq

A
)

,i . (5)
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There will be a corresponding pseudo-Hamiltonian scalar density

H = pi
AqA

,i − L, (6)

for which

δH = qA
,i δp

i
A − LAδq

A . (7)

(The covariance of such a pseudo Hamiltonian distingushes it form the ordinary
kind of Hamiltonian, which depends on the introduction of some preferred time
foliation.)

For an on-shall configuration, i.e., when the dynamical equations

δL
δqA
= 0, (8)

are satisfied, the Lagrangian variation will reduce to a pure surface divergence,

δL = (pi
Aδq

A
)

,i , (9)

and the corresponding on-shell pseudo-Hamiltonian variation will take the form

δH = qA
,i δp

i
A − pi

A, i δq
A . (10)

3. CANONICAL SYMPLECTIC STRUCTURE

It is evident from the preceeding work that the generic first-order variation of
the Lagrangian will be expressible as

δL = δL
δqA

δqA + ϑ i
,i , (11)

in terms of the generalized Liouville 1-form (on the configuration space cotangent
bundle) that is defined by

ϑ i = pi
Aδq

A, (12)

Let us now consider the effect of a pair of successive independent variations
δ́, δ̀, which will give a second-order variation of the form

δ̀δ́L = δ̀
(
δL
δqA

)
δ́qA + δL

δqA
δ̀δ́qA + (δ̀pi

A δ́q
A + pi

A δ̀δ́q
A
)

,i . (13)

Thus using the commutation relationδ̀δ́ = δ́δ̀ one gets

δ̀

(
δL
δqA

)
δ́qA − δ́

(
δL
δqA

)
δ̀qA = $̂ i

,i , (14)

where the symplectic 2-form (on the configuration space cotangent bundle) is
defined by

$̂ i = δ́pi
A δ̀q

A − δ̀pi
A δ́q

A . (15)
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For an on-shell perturbation we thus obtain

δL
δqA
= 0 ⇒ δL = ϑ i

,i , (16)

while for a pair of on-shell perturbations we obtain

δ́

(
δL
δqA

)
= δ̀

(
δL
δqA

)
= 0 ⇒ $̂ i

,i = 0. (17)

The foregoing surface current conservation law is expressible in shorthand
notation as the condition

$ i
,i = 0, (18)

in which the closed (since manifestly exact) symplectic 2-form (15) is specified
using concise wedge product notation as

$ i = δ ∧ ϑ i = δpi
A ∧ δqA . (19)

It is to be remarked that some authors prefer to use an even more concise
notation system in which it is not just the relevant distinguishing (in our case
acute and grave accent) indices that are omitted but even the wedge symbol∧
that indicates the antisymmetrized product relation. However, such an extreme
level abbreviation is dangerous in contexts such as that of the present work in
which symmetric products are also involved, as is shown by the example (Cartas-
Fuentevilla, 2002a) discussed later, in which a formula involving a symmetric
product was applied as if it were an antisymmetric product.

4. TRANSLATION INTO STRICTLY TENSORIAL FORM

In accordance with the strategy (Carter, 1993) of avoiding the supplementary
gauge dependence involved in the use of auxiliary structures such as local frames
and internal surface coordinates by working as far as possible just with quantities
that are strictly tensorial with respect to the background space, it will be preferable
for many purposes to translate the surface current densities whose components
ϑ i and$ i depend on the choice of the internal coordinatesσ i , into terms of the
corresponding vectorial quantities, which will have strictly tensorial background
coordinate components given by

2ν = ‖η‖−1/2xν,iϑ
i , Äν = ‖η‖−1/2xν,,i $

i . (20)

These currents will have strictly scalar surface divergences given in terms of the
corresponding scalar densities by

∇̄ν2ν = ‖η‖−1/2ϑ i
,i , ∇̄ν,Äν = ‖η‖−1/2$ i

,i (21)
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where∇̄ is the surface projected covariant differentiation operator defined in terms
of the fundamental tensorηµν = ηi j xµ,i x

ν
, j by ∇̄ν = ηµν ∇µ.

By the preceeding analysis, a Liouville current conservation law of the form

∇̄ν2ν = 0 (22)

will hold for any symmetry generating pertubation, i.e., for any infinitesimal vari-
ation δqA such thatδL = 0, and a symplectic current conservation law of the
form

∇̄νÄν = 0 (23)

will hold for any pair of perturbations that are on-shell, i.e., such that
δ(δL/δqA) = 0.

5. COVARIANT VARIATION FORMULAE

For physical evaluation of quantities of the Liouville and symplectic currents
2µ and2µ, it is often more convenient to work with something less coordinate-
gauge-dependent than the simple worldsheet-based field component variationsδqA

used in preceding work.
In particular, if the field componentqA is of a kind that is defined over

the background—not just confined to brane worldsheet with internal coordinates
σ i —then with respect to a given system of external coordinates (which might,
for example, be of Minkowski type if the background is flat) in terms of which
∂i qA = xµ,i ∂µqA, the field will have anEulerian(fixed background) variationδ

E
qA

that is well defined independently of any choice of the internal coordinatesσ i ,
unlike the simple brane worldsheet variation, which will be given in terms of the
relevantdisplacement vector, ξµ = δxµ, by

δqA = δ
E

qA + ξµ∂µqA . (24)

When one is dealing with a background field that is not simply a scalar but of
a more general tensorial nature, it will commonly be desirable to go on to convert
theEulerian variationformula

δ
E
= δ − Eξ · ∂ (25)

into terms ofcovariantderivation as given by

Eξ · ∇ = Eξ · ∂ + {Eξ · 0} (26)

where {Eξ · 0} is purely algebraic operator involving contractions with 2-index
quantity (Eξ · 0)µν = ξρ0µρν , as exemplified, for a vectorial (e.g., Killing) fieldkµ,
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or a covectorial (e.g., Maxwellian) forṁAµ, by

{Eξ · 0}kµ = (Eξ · 0)µν kν , {Eξ · 0}Aµ = −(Eξ · 0)νµAν . (27)

Alternatively, instead of using the connection-dependent covariant derivative,
it may be more appropriate to work with the correspondingLie derivative, as given
by a prescription of the form

Eξ£= Eξ · ∇ − {∇ξ}, (28)

in which the operator{∇ξ} acts by contractions with the displacement gradient
tensor∇νξµ, in the manner exemplified respectively for a vectorkµ, or a 1-form
(i.e., covector)Aµ, by the formulae

{∇ξ}kµ = kν∇νξµ, {∇ξ}Aµ = −Aν∇µξν. (29)

It can be seen that connection cancels out, so that the prescription (28) will be
equivalently expressible in terms just of partial derivative components∂νξ

µ as

Eξ£= Eξ · ∂ − {∂ξ}. (30)

Another kind of variation that is particularly important in the context of
brane mechanics—because (unlike the Eulerian, covariant, and Lie derivatives)
it is always well defined even for fields whose support is confined to the brane
worldsheet—is what is known as theLagrangian variation, meaning change with
respect to background coordinates that are dragged by displacement. In the case
of a field that is not confined to the brane worldsheet, so that its Eulerian variation
is well defined, this latter kind will be related to the corresponding Lagrangian
variation by the well-known Lie derivation formula

δ
L
= δ

E
+Eξ£. (31)

Yet another possibility that may be useful is to express theEulerian (fixed
background point) variation in the form

δ
E
= δ

0
−Eξ · ∇, (32)

whereparallely transported variationis defined—not just for background field,
but also for tensor confined to brane—by

δ
0
= δ + {Eξ · 0}, (33)

using operator notation introduced above.
Unlike the covariant and Lie derivationsEξ · ∇ andEξ£ and unlike the Eulerian

variation δ
E
, the parallel variation δ

0
shares with theLagrangianvariation δ

L
the

important property of being well defined not just for background fields but also for
fields whose support is confined to the brane worldsheet. TheLagrangianvariation
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δ
L

will always be expressible directly in terms of the correspondingparallelvariation

δ
0

by a relation of the form

δ
L
= δ

0
−{∇Eξ}, (34)

in which it can be seen that connection dependence cancels out, leaving an expres-
sion of the simple form{∇Eξ}

δ
L
= δ − {∂Eξ}, (35)

where the action of the algebraic operator{∂Eξ} is exemplified for a vectorkµ, or
a covectorAµ, by the respective formulae

{∂Eξ}kµ = kν∂νξ
µ, {∂Eξ}Aµ = −Aν∂µξ

ν. (36)

In conclusion of this overview of the relationships between the various kinds
of infinitesimal variations that are commonly useful, it is to be mentioned that
in literature dealing with purely nonrelativistic contexts in which it is possible
(though not necessarily wise) to work exclusively with space coordinates of strictly
Cartesian (orthonormal) type, the variations of the kind referred to here as “parallel”
are generally described as “Lagrangian” by many authors. That usage does not
necessarily lead to confusion, because for scalars the distinction does not arise, and
because such authors systematically eschew the use (and the technical advantages)
of Lagrangian variations of the fully comoving kind (that is considered here) by
working exclusively with tensor components that are evaluated in terms only of
orthonormal frames.

6. EVALUATION IN TERMS OF LAGRANGIAN VARIATIONS

In typical applications, the relevant set of configuration componentsqA will
include a set of brane field componentsϕα as well as the background coordinates
xµ, so that in terms of displacement vectorξµ = δxµ the Liouville current will
take the form

2ν = ‖η‖−1/2xν,i
(
pi
αδϕ

α + pi
µξ

µ
) = πναδϕα + πνµξµ, (37)

in which the latter version replaces the original momentum components by corre-
sponding background tensorial momentum variables that are defined by

πνα = ‖η‖−1/2xν,i pi
α. (38)

and

πνµ = ‖η‖−1/2xν,i pi
µ. (39)
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To obtain an analogously tensorial formula for the symplectic current
2-form, it is convenient, as a first step, to take advantage of the symmetry property
0νµρ = 0νρµ, of the Riemannian connection of the background space–time metric,
which allows substitution ofparallel variationδ

0
pi
µ = δpi

µ − 0νµρ pi
νξ
ρ for δpi

µ so

as to provide an expression of the form

Äν = ‖η‖−1/2xν,i
(
δpi

α ∧ δϕα + δ
0

pi
µ ∧ ξµ

)
. (40)

The next step is to evaluate the relevant momentum variations in terms of the
correspondingLagrangianvariations, using the formulae

‖η‖−1/2xν,i δp
i
α = δ

L
πνα + πνα ∇̄ρξρ , (41)

and

‖η‖−1/2xν,i δ
L

pi
µ = δ

L
πνµ − πνρ∇µξρ + πνµ∇̄ρξρ. (42)

The advantage ofLagrangian variationsis their convenience for relating the
relevant intrinsic physical quantities via the appropriate equations of state.

7. THE SIMPLY ELASTIC CATEGORY

The illustration that follows will be restricted to thesimply elasticcategory
(including the case of an ordinary barotropic perfect fluid) in which (with respect
to a suitably comoving internal reference systemσ i ) there are no independent
surface fields at all—meaning that theϕα and thepi

α are absent—and in which the
only relevant background field is the metricgµv that is specified as a function of
the external coordinatesxµ.

In any such simply elastic case, the generic variation of the Lagrangian is
fully determined by the relevant surface stress momentum energy density tensor
T̄µν according to the standard prescriptionδL = 1

2‖η‖1/2T̄µν δ
L

gµν , wherebyT̄µν

is specified in terms of partial derivation of the action density with respect to the
metric. In a fixed background (i.e., in the absence of any Eulerian variation of
the metric), the Lagrangian variation of the metric will be given, according to
the formula (31), byδ

L
gµν = Eξ£gµν = 2∇(µν)ξ . By comparing this to canonical

prescriptionδL = Lµξµ + pi
µξ

µ

,i with ξµ = δxµ, it can be seen that the relevant
partial derivatives will be given by the (nontensorial) formulaeLµ = ‖η‖1/20νµρ T̄ρ

ν

and pi
µ = ‖η‖1/2T̄µνηi j xv

, j .
The next step is to translate the result into background tensorial form. It can

be seen from the preceding work that in thesimply elasticcase, the canonical
momentum tensorπνµ and the Liouville current2ν will be given just in terms of
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surface stress tensor̄Tµν by the very simple formulae

πνµ = T̄ν
µ , 2ν = T̄ν

µ ξ
µ. (43)

To proceed, we must consider the second-order metric variation, whereby
(following Friedman and Schutz (1975)) the hyper Cauchy tensor (generalized
elasticity tensor)̄Cµνρσ = C̄ρσµν is specified (Battye and Carter, 1995) in terms
of Lagrangian variations by a partial derivative relation of the form

δ
L
(‖η‖1/2T̄µν) = ‖η‖1/2C̄µνρσ

δ
L

gρσ . (44)

The symplectic current is thereby obtained in the form

Äν = (2C̄ν
µρ
σ ∇̄σ ξρ + T̄νρ∇̄ρξµ

) ∧ ξµ. (45)

8. THE SIMPLE THE DIRAC–GOTO–NAMBU CASE

The perfectly elastic category to which the formula (45) is applicable includes
examples such as the case (to which much attention has been given in recent work
on cosmology) of 3-brane world model with a matter content consisting of a
barotropic perfect fluid matter.

The consideration of such cases will however be left for future work, while the
present paper will be concluded by the treatment of the relatively trivial special case
of a Dirac–Goto–Nambu type brane, i.e., a brane on which there are no internal
fields at all, so that the Lagrangian scalarL introduced in (2) will simply be a
constant, which will be expressible in the form

L = −mp+1 (46)

for some fixed mass scalem.
In terms of the of tangential and orthogonal projectorsηµν and⊥µν = gµν − ηµν ,

it can be seen that for the Dirac–Nambu–Goto case characterized by (46) the
surface stress energy momentum density tensor will be given by an expression of
the familiar simple form

T̄µν = −mp+1ηµν , (47)

while the emphasized Cauchy tensor will be obtained (Battye and Carter, 1995) in
the (less well known) form

C̄ρσµν = mp+1

(
ηµ(ρσ )νη − 1

2
ηµνηρσ

)
. (48)

It can thus be seen that the canonical symplectic current (45) will be given explicitly
by the formula

Äν = mp+1
(
ηνσ⊥µρ + 2η[νρ]

µ ηρ
)
ξµ ∧ ∇̄σ ξρ. (49)
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It can now be checked by direct comparison that this canonical symplectic cur-
rent does indeed agree with the antisymmetric bilinear current that I
originally obtained (Carter, 1993) by a rather different approach. The claim by
Cartas-Fuentaevilla that this bilinear current is of canonical (closed since exact)
type is thereby confirmed.

The reason why the original argument to this effect (Cartas-Fuentevilla,
2002a) was not entirely convincing was that it depended on an assumption to
the effect thatξν ∧ ∇νξµ should vanish. The meaning of this condition is that the
pair of displacement vector fields involved should commute, something that could
always be imposed for a brane in the restricted sense (but not for not for the di-
mensionally maximal limit case of a space filling fluid or solid medium) by using
the gauge freedom to make arbitrary adjustments of the choice of the displacement
field off the worldsheet where it has no physical effect. However, instead of being
invoked as a (perfectly legitimate) choice of gauge, the commutator was expressed
using the dangerously ambiguous abbreviation scheme in which the wedge symbol
∧ was omitted so that it took the formξν∇νξµ, whose vanishing was accounted
for on the basis of a reinterpretation as if the product were of symmetric type,
involving just a single displacement vector fieldξν , which was thereby required
to be geodesic. It happens that this (unnecessary and insufficient) condition of
geodicity could also (if genuinely needed) be imposed (on one but not both of
the commuting vector fields) as a choice of gauge off the worldsheet, but it was
unjustifiably alleged (Cartar-Fuentevilla, 2002a) to be implicit as a necessity for
my method of analysis (Carter, 1993).

Despite of the fact that it does not have to apply in general, the consideration
that the litigious intermediate requirement (namely the simplification provided by
the vector commutation condition, not to mention the quite redundant geodicity
condition) that was invoked (Carter-Fuentevilla, 2002a) can actually be imposed
as an admissible choice of gauge, means that if used more carefully it could after
all provide a logically valid chain of reasoning leading to the final (gauge invariant)
conclusion—albeit by a route that is less explicit and direct than that of the present
paper (which makes no use of any gauge restrictions at all).

To complete this clarification, I would emphasize that my method does not
depend on any (geodesic or other) restriction on the choice of the displacement
vector field off the worldsheet. (This means that the method is applicable, not
just to branes in the restricted sense, but also to ordinary space filling solids
and fluids, for which there cannot be any freedom to adjust the displacement
field, because no off-shell region is available.) As discussed in more detail in
a more recent review (Cartar, 1996), my system of analysis does indeed in-
volved the use of geodicity; however, it is not invoked as a restriction on the
infinitesimal displacement fieldξν but merely as a means of using an (entirely
arbitrary) infinitesimal displacement field to specify a corresponding finite
displacement.
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